30 research outputs found

    Bridging the gender gap in computing: An integrative approach to content design for girls

    Get PDF
    Although some observed differences in males\u27 and females\u27 attitudes toward and uses of computers appear to be narrowing, the gender gap remains widest in relation to programming and software design, which are still male preserves. In response, software and Web site designers have applied feminist theories to develop three distinct approaches to creating content for girls that might increase their interest in computers. These approaches involve appealing to girls\u27 traditional “feminine” interests, nontraditional “masculine” interests, and gender-neutral interests. This study proposes that to bridge today\u27s gender gap, prior approaches need to integrate appeals to girls\u27 traditional and nontraditional interests, and focus content more clearly on learning about computer design itself. An experimental test of this integrative strategy, used to develop a prototype World Wide Web site tested on girls in their homes (n = 125), obtained significant increases in the treatment group\u27s interest in, sense of relevancy of, and motivation to use computers, compared to a control group

    Obesity and colorectal cancer: molecular features of adipose tissue

    Full text link

    Insulin sensitivity: modulation by nutrients and inflammation

    No full text
    Insulin resistance is a major metabolic feature of obesity and is a key factor in the etiology of a number of diseases, including type 2 diabetes. In this review, we discuss potential mechanisms by which brief nutrient excess and obesity lead to insulin resistance and propose that these mechanisms of action are different but interrelated. We discuss how pathways that “sense” nutrients within skeletal muscle are readily able to regulate insulin action. We then discuss how obesity leads to insulin resistance via a complex interplay among systemic fatty acid excess, microhypoxia in adipose tissue, ER stress, and inflammation. In particular, we focus on the hypothesis that the macrophage is an important cell type in the propagation of inflammation and induction of insulin resistance in obesity. Overall, we provide our integrative perspective regarding how nutrients and obesity interact to regulate insulin sensitivity

    Effect of Dietary Omega-3 Fatty Acids on Tumor-Associated Macrophages and Prostate Cancer Progression

    No full text
    BACKGROUND: Preclinical and clinical studies suggest that a fish oil-based diet may play a role in delaying the progression of prostate cancer through a number of different mechanisms involving inflammatory pathways. Given the importance of tumor-associated macrophages (TAMs) in carcinogenesis, we hypothesized that a fish oil-based diet will inhibit TAM infiltration and delay the growth of prostate cancer. METHODS: Androgen sensitive mouse prostate cancer (MycCaP) allograft tumors were grown in fully immunocompetent FVB mice fed a high- fat fish oil (omega-3) or corn oil (omega-6) diet. Gene expression of markers for immune cell populations, cytokines, chemokines and signaling pathways were determined by real-time PCR and western blot in tumor tissue. Cell proliferation and apoptosis in vitro were measured by MTS assay and flow cytometry. RESULTS: Tumor volumes were significantly smaller in mice in ω-3 vs the ω-6 group (P=0.048). Gene expression of markers for M1 and M2 macrophages (F4/80, iNOS, ARG1), associated cytokines (IL-6, TNF alpha, IL-10) and the chemokine CCL-2 were also lower in the omega-3 group. Correlative in vitro studies were performed in M1 and M2 polarized macrophages and mirrored the in vivo findings. Dietary fish oil and in vitro omega-3 fatty acid administration reduced protein expression of transcription factors in the nuclear factor kappa B pathway leading to a significant decrease in gene expression of downstream targets (Bcl-2, BCL-XL, XIAP, survivin) in MycCap cells. CONCLUSIONS: These findings underscore the potential of fish oil in modulating the clinical course of human prostate cancer through the immune system. Further preclinical and clinical studies are warranted evaluating fish oil-based therapies for inhibiting the recruitment and function of M1 and M2 tumor infiltrating macrophages

    TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis.

    No full text
    The MAP kinase kinase kinase TGFβ-activated kinase 1 (TAK1) is activated by TLRs, IL-1, TNF, and TGFβ and in turn activates IKK-NF-κB and JNK, which regulate cell survival, growth, tumorigenesis, and metabolism. TAK1 signaling also upregulates AMPK activity and autophagy. Here, we investigated TAK1-dependent regulation of autophagy, lipid metabolism, and tumorigenesis in the liver. Fasted mice with hepatocyte-specific deletion of Tak1 exhibited severe hepatosteatosis with increased mTORC1 activity and suppression of autophagy compared with their WT counterparts. TAK1-deficient hepatocytes exhibited suppressed AMPK activity and autophagy in response to starvation or metformin treatment; however, ectopic activation of AMPK restored autophagy in these cells. Peroxisome proliferator-activated receptor α (PPARα) target genes and β-oxidation, which regulate hepatic lipid degradation, were also suppressed in hepatocytes lacking TAK1. Due to suppression of autophagy and β-oxidation, a high-fat diet challenge aggravated steatohepatitis in mice with hepatocyte-specific deletion of Tak1. Notably, inhibition of mTORC1 restored autophagy and PPARα target gene expression in TAK1-deficient livers, indicating that TAK1 acts upstream of mTORC1. mTORC1 inhibition also suppressed spontaneous liver fibrosis and hepatocarcinogenesis in animals with hepatocyte-specific deletion of Tak1. These data indicate that TAK1 regulates hepatic lipid metabolism and tumorigenesis via the AMPK/mTORC1 axis, affecting both autophagy and PPARα activity
    corecore